合明科技摄像模组感光芯片CMOS晶片镜片清洗剂,LED芯片焊后助焊剂锡膏清洗剂、CMOS焊接后清洗剂、FPC电路板清洗剂、SMT元器件封装工艺清洗剂、微波组件助焊剂松香清洗剂、车用IGBT芯片封装水基清洗方案,SMT电子制程水基清洗全工艺解决方案,汽车用 IGBT芯片封装焊后清洗剂,IGBT芯片清洗剂,IGBT模块焊后锡膏清洗剂,IGBT功率半导体模块清洗,SMT锡膏回流焊后清洗剂,PCBA焊后水基清洗剂,系统封装CQFP器件焊后助焊剂清洗剂、SIP芯片焊后清洗剂、BMS电路板焊后清洗剂,半导体分立器件除助焊剂清洗液、半水基清洗剂、IGBT功率模块焊后锡膏水基清洗剂、PCB组件封装焊后水性环保清洗剂、SMT封装焊后清洗剂、精密电子清洗剂、半导体分立器件清洗剂、SMT焊接助焊剂清洗剂、锡嘴氧化物清洗剂、PCBA清洗剂、芯片封装焊后清洗剂、水性清洗剂、FPC清洗剂、BGA植球后清洗剂、球焊膏清洗剂、FPC电路板水基清洗剂、堆叠组装POP芯片清洗剂、油墨丝印网板水基清洗全工艺解决方案、BMS新能源汽车电池管理系统电路板制程工艺水基清洗解决方案、储能BMS电路板水基清洗剂、PCBA焊后助焊剂清洗剂、组件和基板除助焊剂中性水基清洗剂、功率电子除助焊剂水基清洗剂、功率模块/DCB、引线框架和分立器件除助焊剂水基清洗剂、封装及晶圆清洗水基清洗剂、倒装芯片水基清洗、SIP和CMOS芯片封装焊后清洗剂、SMT钢网、丝网和误印板清洗除锡膏、银浆、红胶,SMT印刷机网板底部擦拭水基清洗剂、焊接夹治具、回流焊冷凝器、过滤网、工具清洗除被焙烤后助焊剂和重油污垢清洗剂,电子组件制程水基清洗全工艺解决方案。
清洗剂在在线通过式清洗工艺中的性能稳定性,需要有相应的技术手段来进行监测和管控,以清洗性能的发挥或材料兼容性的稳定。在这些监测数据中,重要的是清洗剂的使用浓度可控范围之内,建议使用在线喷淋通过机的用户装配在线清洗剂浓度监测装置,以监测清洗剂在使用中的浓度变化。因为在线喷淋机的设备特性,在使用运行中,清洗剂的浓度变化比较大,如不能有效的监控清洗剂的浓度,将会产生材料兼容性方面的风险。一般来说,清洗剂在机内运行,随着时间的关系,浓度会升高,常规需要通过添加DI水来清洗剂的浓度稳定。使用在线浓度检测仪,可使用人工添加水和自动添加水的方式进行浓度控制。
清洗剂的消耗和寿命。在线通过式喷淋机用水基清洗剂的消耗有三个组成部分: 气雾损耗、被清洗物和网带的带离损耗、清洗剂到达寿命终点的全液更换。在这三项消耗中,大的组成往往是气雾损耗,气雾损耗很大程度是喷淋机固有的机械特性所决定。人为可改变调整的程度不高,用户需在设备选型的时候关注此项技术指标。清洗剂的寿命,以目前的技术手段,无法监测清洗剂的寿命,通常在产线中,以产线的实际检测干净度的标准,观察检测清洗剂的寿命终点,而后,保留和预留一部分安全余量来进行清洗剂全量更换的依据。
系统级封装SiP技术
SiP是半导体封装领域的的一种新型封装技术,将一个或多个IC芯片及被动元件整合在一个封装中,综合了现有的芯核资源和半导体生产工艺的优势。SiP是为整机系统小型化的需要,提高半导体功能和密度而发展起来的。SiP使用成熟的组装和互连技术,把各种集成电路如CMOS电路、GaAs电路、SiGe电路或者光电子器件、MEMS器件以及各类无源元件如电阻、电容、电感等集成到一个封装体内。
自从1960年代以来,集成电路的封装形式经历了从双列直插、四周扁平封装、焊球阵列封装和圆片级封装、芯片尺寸封装等阶段。而小型化、轻量化、、多功能、高可靠性和低成本的电子产品的总体发展趋势使得单一芯片上的晶体管数目不再是面临的主要挑战,而是要发展更的封装及时来满足产品轻、薄、短、小以及与系统整合的需求,这也使得在立的系统(芯片或者模块)内充分实现芯片的功能成为需要克服的障碍。这样的背景是SiP逐渐成为近年来集成电路研发机构和半导体厂商的研究对象。SiP作为一种全新的集成方法和封装技术,具有一系列特的技术优势,满足了当今电子产品更轻、更小和更薄的发展需求,在微电子领域具有广阔的应用市场和发展前景。
功率半导体:电子装置电能转换与电路控制的核心
功率半导体是电子装置电能转换与电路控制的核心。功率半导体是一 种广泛用于电力电子装置和电能转换和控制电路的半导体元件,可通过半 导体的单向导电性实现电源开关和电力转换的功能。
功率半导体具有能够支持高电压、大电流的特性,主要用途包括变 频、整流、变压、功率放大、功率控制等。除保障电路正常运行外,因其 能够减少电能浪费,功率半导体还能起到节能、省电的作用。
功率半导体=功率器件+功率 IC
功率半导体按器件集成度可以分为功率分立器件和功率 IC 两大类。功率分立器件包括二极管、晶体管和晶闸管三大类,其中晶体管市场 规模大,常见的晶体管主要包括 IGBT、MOSFET、BJT(双极结型晶体 管)。
功率 IC 是指将高压功率器件与其控制电路、外围接口电路及保护电 路等集成在同一芯片的集成电路,是系统信号处理部分和执行部分的桥 梁。
IGBT:电力电子行业的“CPU”
兼具 MOSFET 及 BJT 两类器件优势,IGBT 被称为电力电子行业的 “CPU”。IGBT 全称绝缘栅双极晶体管,是由 BJT(双极型三极管)和 MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件。
IGBT 具有电导调制能力,相对于 MOSFET 和双极晶体管具有较强的 正向电流传导密度和低通态压降,因此兼具有 MOSFET 的高输入阻抗 MOSFET 器件驱动功率小、开关速度快、BJT 器件饱和压降低、电流密度 高和 GTR 的低导通压降的优点。
IGBT发展史:历经七代技术演进,产品性能逐代提升
历时超 30 年,IGBT 已经发展至第七代,各方面性能不断优化。目前 为止,IGBT 芯片经历了七代升级:衬底从 PT 穿通,NPT 非穿通到 FS 场 截止,栅极从平面到 Trench 沟槽,后到第七代的精细 Trench 沟槽。
随着技术的升级,芯片面积、工艺线宽、通态功耗、关断时间、开关 功耗均不断减小,断态电压由代的600V升至第七代7000V。
IGBT 的导通和关断由栅-射极(即上图中源极)电压 UGE 控制。其工作原理是栅极电压 UGE 为正向电压且 大于开启电压时,IGBT 中的 MOSFET 部分形成沟道,提供基极电流,器件导通,IC和 UGE大部分保持线性; 而在栅极加零或负电压时,沟道消失,基极电流为 0,IGBT 关断。IGBT 导通电阻的降低是因为 PNPN 四层结 构带来的 PN 结电导调制效应。静态电气特性方面高栅-射极电压受大集电极电流限制,饱和区类似 MOS 结构特性有源区类似于晶体管特性,所以 IGBT 主要工作在饱和区(开)和正向阻断区(关);而动态电气特性 方面,器件导通需要经历栅极正向电压-基极电流产生-集电极电流产生的过程,故有两次延迟;器件关断时因为 没有反向基极电流抽取过量载流子,故只能通过集电极传导,形成拖尾电流。综上,IGBT 可以满足逆变的基本 需求,但开关速度、开关损耗等存在一定劣势。当前硅基 IGBT 系统的综合效率(以逆变器效率计)约 92%, 相比于其峰值效率仍有一定差距。